학부·대학원

에너지시스템연구실

에너지시스템연구실 WELCOME TO OUR LABORATORY
  • 지도교수 김우태 교수
  • 위치 -
  • 전화 -

연구실소개

에너지시스템연구실에서는 열전달, 유체유동, 연소, 화학반응에 기반한 에너지시스템에서 발생하는 다양한 물리적 현상들을 이론적, 수치해석적 방법을 통해 연구하고 있습니다.

연구분야

  • 고분자 연료전지 I-V 성능해석
  • 고분자 연료전지 가스채널 내의 물관리 연구
  • 탄소나노튜브, 그래핀 소재를 채택한 LED Lamp 방열 해석
  • 화학열펌프 (Chemical Heat Pump) 설계 및 성능해석
  • 이차전지 배터리시스템 열설계 및 열관리 해석
  • 폐기물 연소기 내의 유동 및 연소 수치해석
  • 식물공장 건축물 열정산 및 냉난방 특성 해석
  • 입자기반 고성능, 고속 수치해법 개발
  • 열유동 현상 해석을 위한 Lattice Boltzmann Method 개발
  • 산업용 열유체기기, 연소기기 성능해석

보유장비

  • 수치해석전용 Dual Octacore CPUs Workstations
  • ANSYS CFD Research (Fluent and CFX)
  • Infrared Imaging Camera
  • TECPLOT Postprocessing Software

발표논문

  • J. H. Jo and W. T. Kim, "Numerical Simulation of Liquid Droplet-Droplet Interaction in a PEMFC Gas Channel," Jou. of Korean Soc. of Mechanical Technology, 16(6) 2041-2046 (2014).
  • J. H. Jo and W. T. Kim, "Numerical Analysis of the Effect of Cathode Inlet Relative Humidity on PEMFC Performance," Jou. of Korean Soc. of Mechanical Technology, 16(3) 1509-1514 (2014).
  • E. H. Ryu, S. W. Kim, and W. T. Kim, "Analysis of Cooling Performance of xEV Battery Module Depending on Cooling Fluid Inlet Position," Jou. of Korean Soc. of Mechanical Technology, 15(6) 967-971 (2013).
  • J. H. Jo and W. T. Kim, "Analysis of Thermal Fluid Flow in the Solar Thermal Energy Storage Tank Depending on the Filler Material Characteristics," Jou. of Korean Soc. of Mechanical Technology, 15(6) 955-959 (2013).
  • J. H. Jo and W. T. Kim, "Numerical Analysis of the Effect of Operating Pressure and Operating Temperature on PEMFC Performance," Jou. of Korean Soc. of Mechanical Technology, 15(2) 247-253 (2013).
  • C. K. Lee and W. T. Kim, "A Study on the Heating and Cooling Energy Load Analysis of the KNU Plant Factory," Journal of the Korea Academia-Industrial Cooperation Society, 13(4), 1419-1426 (2012).
  • J. H. So and W. T. Kim, "Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory,"Korean Journal of Air-Conditioning and Refrigeration Engineering, 24(4), 351-357 (2012).
  • W. T. Kim, D. Kim, S. H. Vemuri, S. C. Kang, P. S. Chung, and M. S. Jhon, "Multicomponent Gas Mixture Air Bearing Modeling via Lattice Boltzmann Method," Journal of Applied Physics, 109, 07B759 (2011).
  • D. Kim, W. T. Kim, H. M. Kim, H. Chen, P. Jain, and M. S. Jhon, “A Novel Simulation of Air/liquid Bearings Based on Lattice Boltzmann Method,” Journal of Applied Physics, 105, 07B701 (2009).
  • H. M. Kim, D. Kim, W. T. Kim, P. S. Chung, and M. S. Jhon, “Langmuir Slip Model for Air Bearing Simulation using the Lattice Boltzmann Method,” IEEE Transactions on Magnetics, 43(6), 2244-2246 (2007).
  • S. S. Ghai, P. S. Chung, W. T. Kim, C. Amon, and M. S. Jhon, “Thermal Modeling of a Multilayered Film via Taylor Series Expansion- and Least Squares-Based-Lattice Boltzmann Method,” IEEE Transactions on Magnetics, 42(10), 2474-2476 (2006).
  • S. S. Ghai, W. T. Kim, C. H. Amon, and M. S. Jhon, “Transient Thermal Modeling of a Nanoscale Hot-spot in Multilayered Film,” Journal of Applied Physics, 99, 08F906 (2006).
  • W. T. Kim, H. Chen, and M. S. Jhon, “Viscoelastic Liquid Bearing Modeling via Lattice Boltzmann Method,” Journal of Applied Physics, 99, 08N106 (2006).
  • C. H. Amon, S. S. Ghai, W. T. Kim, and M. S. Jhon, “Modeling of Nanoscale Transport Phenomena: Application to Information Technology,” Physica A, 362, 36-41 (2006).
  • Y. Zhou, R. Zhang, I. Staroselsky, H. Chen, W. T. Kim, and M. S. Jhon, “Simulation of Micro- and Nano-scale Flows via the Lattice Boltzmann Method,” Physica A, 362, 68-77 (2006).
  • W. T. Kim, S. S. Ghai, Y. Zhou, I. Staroselsky, H. Chen, and M. S. Jhon, “Head-Disk Interface Modeling with the Lattice Boltzmann Method,” IEEE Transactions on Magnetics, 41, 3016-3018 (2005).
  • S. S. Ghai, W. T. Kim, R. A. Escobar, C. H. Amon, and M. S. Jhon, “A Novel Heat Transfer Model and Its Application to Magnetic Storage Systems,” Journal of Applied Physics, 97, 10P703 (2005).
  • Q. Guo, H. Chen, W. T. Kim, and M. S. Jhon, “Novel Multiscale Modeling and Its Application to the Integrated Head-Disk Interface Simulation,” Journal of Applied Physics, 97, 10P310 (2005).
  • W. T. Kim, M. S. Jhon, Y. Zhou, I. Staroselsky, and H. Chen, “Nanoscale Air Bearing Modeling via Lattice Boltzmann Method,” Journal of Applied Physics, 97, 10P304 (2005).
  • T. E. Karis, W. T. Kim, and M. S. Jhon, “Spreading and Dewetting in Nanoscale Lubrication,” Tribology Letters 18, 27-41 (2005).
  • W. T. Kim, K. -H. Hong, M. S. Jhon, J. VanOsdol, and D. Smith, “Forced Convection in a Circular Pipe with a Partially Filled Porous Medium,” KSME International Journal, 17(10), 1583-96 (2003).
  • W. T. Kim, S. K. Mitra, X. Li, L. A. Prociw, and T. C. J. Hu, “A Predictive Model for the Initial Droplet Size and Velocity Distributions in Sprays and Comparison with Experiments,” Particle and Particle Systems Characterization, 20, 135-49 (2003).
  • W. T. Kim and K. Y. Huh, “Numerical Simulation of Spray Autoignition by the First-Order Conditional Moment Closure Model,” Proceedings of the Combustion Institute, 29, 569-76 (2002).
  • W. T. Kim, Kang Y. Huh, J. A. Friedman, and M. Renksizbulut, “Numerical Simulation of a Steady Hollow-Cone Methanol Spray Flame within an Annular Air Jet,” Combustion Science and Technology, 171, 119-39 (2001).
  • W. T. Kim, K. Y. Huh, J. A. Friedman, and M. Renksizbulut, “Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet,” Atomization and Sprays, 11(2), 187-200 (2001).
  • W. T. Kim, K. Y. Huh, J. W. Lee, and K. Y. Kang, “Numerical Simulation of Intake and Compression Flow in a Four-Valve Pent-Roof Spark Ignition Engine and Validation with LDV Data,” Journal of Automobile Engineering, 214, 361-72 (2000).
  • W. T. Kim and K. Y. Huh, “Computational Fluid Dynamic Analysis of the In-Cylinder Flow, Fuel Spray and Combustion in Internal Combustion Engines,” Computational Fluid Dynamics Journal, 4(4), 492-506 (1998).